
2019-10-09

1

ECE 150 Fundamentals of Programming

Prof. Hiren Patel, Ph.D.

Douglas Wilhelm Harder, M.Math. LEL

hdpatel@uwaterloo.ca dwharder@uwaterloo.ca

© 2018 by Douglas Wilhelm Harder and Hiren Patel.

Some rights reserved.

Bit-wise and bit-shift
operators

2
Bit-wise and bit-shift operators

Outline

• In this presentation, we will:

– Bitwise logical operations versus Boolean logical operations

– Introduce

• The binary EXCLUSIVE OR operator in addition to AND and OR

• The unary NOT operator

– Integrated development environments and on-line compilers

3
Bit-wise and bit-shift operators

Logical operators

• We have seen two logical operators:

– The binary logical AND operator and the binary logical OR operator

– Their behavior is defined by the values of the operands:

– Recall that any zero value is false, while any non-zero value is true

• true and false have the values 1 and 0, respectively

x y x && y x || y

false false false false

false true false true

true true true true

true false false true

4
Bit-wise and bit-shift operators

Primitive types

• Recall that primitive types are a fixed number of bits

– Given any two bits, we could define

– Recall that any zero value is false, while any non-zero value is true

• true and false have the values 1 and 0, respectively

b1 b2 b1 AND b2 b1 OR b2

0 0 0 0

0 1 0 1

1 1 1 1

1 0 0 1

2019-10-09

2

5
Bit-wise and bit-shift operators

Bit-wise AND operator

• There are three binary bit-wise operators in C++

– Given any two operands of the same type, the bit-wise AND operator &
compares the corresponding pairs of bits

– The result is 1 only if both bits are also 1

00100100101010010100101001010100

& 01001010101011110100111101000001

00000000101010010100101001000000

– The bit-wise AND of any pair of bits does not affect any other result

int m{615074388};

int n{1253003073};

std::cout << (m & n) << std::endl;

6
Bit-wise and bit-shift operators

Bit-wise OR operator

• The second is bit-wise OR operator |

– Given any two operands of the same type a logical OR to each
corresponding pair of bits

– The result is 0 only if both bits are also 0

00100100101010010100101001010100

| 01001010101011110100111101000001

01101110101011110100111101010101

int m{615074388};

int n{1253003073};

std::cout << (m | n) << std::endl;

7
Bit-wise and bit-shift operators

Bit-wise EXCLUSIVE-OR operator

• The third is bit-wise XOR operator

– This has no equivalent binary logical operator

– For this result to be true, one but not both operands must be true

b1 b2 b1 AND b2 b1 OR b2 b1 XOR b2

0 0 0 0 0

0 1 0 1 1

1 1 1 1 0

1 0 0 1 1

8
Bit-wise and bit-shift operators

Bit-wise XOR operator

• The third is bit-wise XOR operator ^

– This has no equivalent binary logical operator

– If both bits have the same value, the result is 0, otherwise it is 1

00100100101010010100101001010100

^ 01001010101011110100111101000001

01101110000001100000010100010101

int m{615074388};

int n{1253003073};

std::cout << (m ^ n) << std::endl;

2019-10-09

3

9
Bit-wise and bit-shift operators

Automatic bit-wise assignment

• For each binary bit-wise operator, there is an automatic assignment
operator:

n.b., there are no Boolean automatic assignment operators

– The operators &&= and ||= do not exist in C++

Assignment
Automatic

assignment
Name

a = a & 32 a &= 32 auto AND

b = b | 41 b |= 41 auto ORR

c = 2 ^ c c ^= 2 auto XOR

10
Bit-wise and bit-shift operators

Unary bit-wise NOT operator

• A unary bit-wise operator is the NOT operator ~

– It is equivalent to applying the logical NOT operator ~ to each bit

~ 01001010101011110100111101000001

10110101010100001011000010111110

int n{1253003073};

std::cout << (~n) << std::endl;

std::cout << (-n) << std::endl;

std::cout << ((~n) + 1) << std::endl;

11
Bit-wise and bit-shift operators

Application of bit-wise operators

• One significant application of bit-wise operators is the manipulation
of individual bits within a primitive type

• Consider this local variable:

unsigned int MASK512{0b00000000000000000000001000000000};

// Also, either unsigned int MASK512{512};

// or unsigned int MASK512{0x200};

• Given any other unsigned integer m where m9 is the 9th bit:

Operation Description

m & MASK512 Equal 0 if m9 is 0 and MASK512 if m9 is 1

m | MASK512 Equals m with m9 set to 1

m ^ MASK512 Equals m with the value of m9 flipped

m & (~MASK512) Equals m with m9 set to 0

12
Bit-wise and bit-shift operators

Bit-shift operators

• There are two operators that literally shift bits left or right:

– Return the bits of the operand op shifted to the left by n bits

op << n

– Return the bits of the operand op shifted to the right by n bits

op >> n

• Any bits shifted beyond the last position are lost

• The amount to be shifted must be positive

– The operand n will be interpreted as an unsigned integer

2019-10-09

4

13
Bit-wise and bit-shift operators

Bit-shift operators

• Examples:

– If op is four bytes and has the value

00100100111110010100111001010100

– The result of op >> 5 is

00000001001001111100101001110010

– The result of op >> 12 is

00000000000000100100111110010100

– The result of op << 8 is

11111001010011100101010000000000

– The result of op << 13 is

00101001110010101000000000000000

14
Bit-wise and bit-shift operators

Automatic bit-shift assignment

• There are two automatic bit-shift operators

– Shift the bits in the operand op to the left by n bits

op <<= n

– Shift the bits in the operand op to the right by n bits

op >>= n

15
Bit-wise and bit-shift operators

Application of bit-shift operators

• There are two common applications of bit-shift operators:

– A fast unsigned integer multiplication or division by 2m:

unsigned int n{3235};

// 3

// Multiplying n by 2

n = n << 3;

// 5

// Dividing n by 2 using integer division

// - the remainder is discarded

n = n >> 5;

– This does not work if n is signed and negative :

16
Bit-wise and bit-shift operators

Application of bit-shift operators

• There are two common applications of bit-shift operators:

– Creating a type with the nth bit set to 1

// Create the unsigned integer 0b00…00100000

unsigned int m{1 << 5};

– This is also a fast way of generating an integer equal to 2nequal

• The initialized value of m is 25 = 32

• Note: if you are dealing with bits, don’t think of 1 << 23 as having
the value 8388608, but rather, just think of it as four bytes with a 1 in
the 23rd location

– Is 135217728 a power of two, and if so, which power of two?

2019-10-09

5

17
Bit-wise and bit-shift operators

Auto-assignment bit-wise and bit-shift
operators

• As with addition, there are corresponding auto-assignment
operators for both bit-wise and bit-shift operators

a = a & b; a &= b;

a = a | b; a |= b;

a = a ^ b; a ^= b;

a = a << n; a <<= n;

a = a >> n; a >>= n;

• Very important: there are no auto-assignment operators for the
logical operators && and ||

18
Bit-wise and bit-shift operators

Applications of auto-assignment operators

• Common applications of auto-assignment operators include:

– Bit manipulation

// The 9th bit is set to 1

unsigned int MASK_9{1 << 9};

unsigned int flags{0};

Operation Description

flags |= MASK9 Set the 9th bit of flags to 1

flags ^= MASK9 Flip the 9th bit of flags

flags &= (~MASK9) Set the 9th bit of flags to 0

19
Bit-wise and bit-shift operators

Applications of auto-assignment operators

• Common applications of auto-assignment operators include:

– Multiplication and integer division by powers of two

unsigned int m{53234};

// 3

// Multiply 'm' by 2 = 8

m <<= 3;

// 'm' is now assigned 425872

// 13

// Divide 'm' by 2 = 8192 using integer division

m >>= 13;

// 'm' is now assigned 51

20
Bit-wise and bit-shift operators

Summary of operators

• To summarize our knowledge of operators

Operator Binary Unary

Arithmetic + - * / % + -

Comparison < <= == != >= >

Logical && || !

Bit-wise & | ^ ~

Bit-shift << >>

Assignment =

Pointer * &

Structure . ->

Arithmetic auto-assignment += -= *= /= %= ++ --

Bit-wise auto-assignment &= |= ^=

Bit-shift auto-assignment <<= >>=

2019-10-09

6

21
Bit-wise and bit-shift operators

Summary

• In this presentation, you now

– Are aware of bit-wise and bit-shifting operators

– Understand the behavior of these operators

– Understand the automatic operators corresponding to these

• There are no &&= or ||= 0perators

22
Bit-wise and bit-shift operators

References

[1] No references?

23
Bit-wise and bit-shift operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

24
Bit-wise and bit-shift operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

