2019-10-09

ECE 150 Fundamentals.of Programming

PR UNIVERSITY OF WATERLOO
N EN

Outline

» In this presentation, we will:
— Bitwise logical operations versus Boolean logical operations
— Introduce
+ The binary EXCLUSIVE OR operator in addition to AND and OR
+ The unary NOT operator
— Integrated development environments and on-line compilers

! Bit-wise and bit-shift
\ oyerators

-

Logical operators Primitive types
» We have seen two logical operators: * Recall that primitive types are a fixed number of bits
— The binary logical AND operator and the binary logical OR operator — Given any two bits, we could define
— Their behavior is defined by the values of the operands:
X y x && y x ||y b, b, b, AnD b, b, OR b,

false false false false 2] 2] 2] 2]
false true false true 0 1 0 1
true true true true 1 1 1 1
true false false true 1 0) 1

— Recall that any zero value is false, while any non-zero value is true — Recall that any zero value is false, while any non-zero value is true

* trueand false have the values 1 and @, respectively * trueand false have the values 1 and o, respectively

2019-10-09

VI

Bit-wise AND operator

B

Bit-wise OR operator

» There are three binary bit-wise operators in C++ » The second is bit-wise OR operator |
— Given any two operands of the same type, the bit-wise AND operator & — Given any two operands of the same type a logical OR to each
compares the corresponding pairs of bits corresponding pair of bits
— The resultis 1 only if both bits are also 1 — The result is @ only if both bits are also @
00100100101010010100101001010100 00100100101010010100101001010100
& 01001010101011110100111101000001 | 91001010101011110100111101000001
00000000101010010100101001000000 01101110101011110100111101010101

— The bit-wise AND of any pair of bits does not affect any other result

int m{615074388}; int m{615074388};
int n{1253003073}; int n{1253003073};
std::cout << (m & n) << std::endl; std::cout << (m | n) << std::endl;

W

Bit-wise XOR operator

Bit-wise And bit-shift.Opers

i S

Bit-wise EXCLUSIVE-OR operator

AU

+ The third is bit-wise XOR operator + The third is bit-wise XOR operator *

— This has no equivalent binary logical operator — This has no equivalent binary logical operator

— For this result to be true, one but not both operands must be true — If both bits have the same value, the result is @, otherwise it is 1
b, b, b, mD b, by R b, b, X0k b, 00100100101010010100101001010100

~ 01001010101011110100111101000001

0 N © N ° 01101110000001100000010100010101
0 1 0 1 1
1 1 1 1 0
1 [} [} 1 1

int m{615074388};
int n{1253003073};
std::cout << (m ~ n) << std::endl;

2019-10-09

Bit-wise And bit-shift Ope

e S et

Unary bit-wise NOT operator

e S

Automatic bit-wise assignment

» For each binary bit-wise operator, there is an automatic assignment * A unary bit-wise operator is the NOT operator ~
operator: — Itis equivalent to applying the logical NOT operator ~ to each bit
Assignment Automatic Name
g! assignment ~ 01001010101011110100111101000001
a-a&32 a & 32 auto AND 10110101010100001011000010111110
b=>b| 41 b |=41 auto OR
oA As
c=2"c¢ cr=2 auto XOR int n{12530@3073};
std::cout << (~n) << std::endl;
n.b., there are no Boolean automatic assignment operators std::cout << (-n) << std::endl;
— The operators &= and | | = do not exist in C++ std::cout << ((~n) + 1) << std::endl;

Bit-wise And bit-shift opera

Application of bit-wise operators Bit-shift operators
+ One significant application of bit-wise operators is the manipulation » There are two operators that literally shift bits left or right:
of individual bits within a primitive type — Return the bits of the operand op shifted to the left by n bits
op << n
« Consider this local variable: — Return the bits of the operand op shifted to the right by n bits
unsigned int MASK512{@b 1 }s op >>n
// Also, either unsigned int MASK512{512};
// or unsigned int MASK512{@x200}; * Any bits shifted beyond the last position are lost
+ The amount to be shifted must be positive
* Given any other unsigned integer m where m is the 9th bit: — The operand n will be interpreted as an unsigned integer
Operation Description

m & MASK512 Equal 0 if my is @ and MASK512 if my is 1
m | MASK512 Equals m with m, set to 1

m A MASK512 Equals m with the value of m, flipped

m & (~MASK512) Equalsmwith mg setto @

2019-10-09

Bit-wise And bit-shift

iy O

Bit-shift operators Automatic bit-shift assignment
» Examples: * There are two automatic bit-shift operators
— If op is four bytes and has the value — Shift the bits in the operand op to the left by n bits
00100100111110010100111001010100 op <<= n
— Shift the bits in the operand op to the right by n bits
— Theresultofop >> 5 is op >>=n

00000001001001111100101001110010
The resultofop >> 12 is
00000000000000100100111110010100
— Theresultofop << 8 is
11111001010011100101010000000000
The resultof op << 13 is
00101001110010101000000000000000

Bit-wise And bit-shift.Opers

TP
Application of bit-shift operators

T
Application of bit-shift operators

» There are two common applications of bit-shift operators: * There are two common applications of bit-shift operators:
— A fast unsigned integer multiplication or division by 2™m: — Creating a type with the nt bit set to 1
unsigned int n{3235}; // Create the unsigned integer 0b00..00100000
// 3 unsigned int m{1 << 5};
// Multiplying n by 2
no=n<<3; — This is also a fast way of generating an integer equal to 2"equal
* The initialized value of mis 25 = 32
// 5
// Dividing n by 2 using integer division « Note: if you are dealing with bits, don’t think of 1 << 23 as having
/1 - the remainder is discarded the value 8388608, but rather, just think of it as four bytes with a 1 in
n=no>5; the 231 location

. .. . — Is 135217728 a power of two, and if so, which power of two?
— This does not work if n is signed and negative :

Bit-wise And bit-shift OPE

v Sy :
Auto-assignment bit-wise and bit-shift

operators

* As with addition, there are corresponding auto-assignment
operators for both bit-wise and bit-shift operators

a=a&b; a &= b;
a=al| b; a |=b;
a=a”"b; a *= b;
a=a<<n; a <<= n;
a=a> n; a >>=n;

+ Very important: there are no auto-assignment operators for the
logical operators && and | |

Bit-wise And bit-shift opera

Applications of auto-assignment operators

» Common applications of auto-assignment operators include:
— Multiplication and integer division by powers of two
unsigned int m{53234};

/7 3
// Multiply 'm' by 2 =38
m <<= 3;

// 'm' is now assigned 425872

// 13
// Divide 'm' by 2 = 8192 using integer division
m >>= 13;

// 'm' is now assigned 51

2019-10-09

Applications of auto-assignment operators

» Common applications of auto-assignment operators include:
— Bit manipulation
// The 9th bit is set to 1
unsigned int MASK_9{1 << 9};
unsigned int flags{@};

Operation Description
flags |= MASK9 Set the 9t bit of flags to 1
flags "= MASK9 Flip the 9t bit of flags
flags &= (~MASK9) Set the 9t bit of flags to @

e Sl

Summary of operators

» To summarize our knowledge of operators

Operator Binary Unary
Arithmetic +- %/ % + -
Comparison < <= == l=>= >
Logical && || !
Bit-wise & |~ ~
Bit-shift << >>
Assignment =
Pointer * 8
Structure .-

Arithmetic auto-assignment += -= *= [= %= ++ --
Bit-wise auto-assignment &= |= "=
Bit-shift auto-assignment <<= >>=

Bit-wise And bit-shift ope :

Summary

+ In this presentation, you now
— Are aware of bit-wise and bit-shifting operators
— Understand the behavior of these operators

— Understand the automatic operators corresponding to these
« There are no &= or | | = operators

Bit-wise And bit-shift.Opers

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical

Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see
https://www.rbg.ca/
for more information.

=

Bit-wise And bit-shift 2 &Fa

References

[1] No references?

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

2019-10-09

